Unofficial Comment Form

Project 2021-01 Modifications to MOD-025 and PRC-019 Standard Authorization Request

Do not use this form for submitting comments. Use the Standards Balloting and Commenting System to submit comments for the Project 2021-01 Modifications to MOD-025 and PRC-019 Standard Authorization Request by 8 p.m. Eastern, Monday, April 2, 2021.

Additional information is available on the project page. If you have questions, contact Senior Standards Developer, Chris Larson (via email), or at 404-446-9708.

Background

The PPMVTB developed this SAR to revise MOD-025-2 to address issues regarding verification and data reporting of generator active and reactive power capability. As stated in the SAR, implementation of the standard has rarely produced data that is suitable for planning models (i.e., the stated purpose of the standard). The current MOD-025-2 verification testing activities require significant time, expertise, and coordination; however, they do not result in data that should be used by planners for modeling purposes. The SAR aims to retain testing activities are useful and focus on more effective means of collecting useful data for planning models. The Reliability, Security, and Technology Committee (RSTC) endorsed the SAR on October 19, 2020.

PRC-019-2 addresses the reliability issue of miscoordination between generator capability, control systems, and protection functions. However, PRC-019-2 was developed with a bias toward synchronous generation and does not sufficiently outline the requirements for all generation resource types. The proposed Standard Authorization Request (SAR) aims to address a number of issues identified by the SPCS and revise the standard to be inclusive of all types of generation resources. The SAR was endorsed by the NERC Planning Committee (PC) on March 4, 2020.

The MOD-025-2 and PRC-019-2 SARs were accepted and authorized for informal posting at the January 20, 2021 SC meeting.

The appointed SAR DT will also determine how to addresses the applicable scope of Project 2020-02 Transmission-connected Dynamic Reactive Resources, which also seeks to modify MOD-025-2 and PRC-019-2. See Project 2020-02 Transmission-connected Dynamic Reactive Resources for additional background.
Questions

1. Do you agree with the proposed scope as described in the MOD-025 SAR? If you do not agree, or if you agree but have comments or suggestions for the project scope provide your recommendation and explanation.

☐ Yes
☐ No

Comments:
An analysis is needed by the Transmission Planners and Planning Coordinators. Currently, there is no feedback mechanism. Need to ensure that there are clearer directions for the information requested. Current directions are unclear.

2. Do you agree with the proposed scope as described in the PRC-019 SAR? If you do not agree, or if you agree but have comments or suggestions for the project scope provide your recommendation and explanation.

☐ Yes
☐ No

Comments:
The SAR should add in the consideration of the SER Project Phase 1 recommendation from 2018 which specified: PRC-019-2 R1 (LT) Requirement R2 already requires that any change that impacts the voltage regulating coordination be performed within 90 days of changes. If this requirement is followed, the five-year coordination is an unnecessary paper exercise with no reliability benefit once the initial coordination study has been completed.

3. In your opinion, should the project scope of Project 2021-01 Modifications to MOD-025 and PRC-019 and Project 2020-02 Transmission-connected Dynamic Reactive Resources (MOD-025 & PRC-019 portions only) be addressed by the Project 2021-01 SAR DT? Please explain.

☐ Yes
☐ No

Comments:
Transmission connected dynamic reactive resources are a separate topic and the standards should be updated to address the generating resources first before adding non-generation.

4. Provide any additional comments for the SAR drafting team to consider, if desired.

Comments:
We are in support of the modification to the NERC standards to close gaps between historical requirements on synchronous generation and the now common inverter-based resources.